

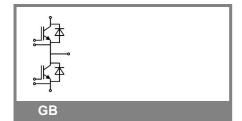
SEMITRANS[®] 3

Ultra Fast IGBT Module

SKM 300GB125D

Preliminary Data

Features


- NPT Non punch-through IGBT
- Low inductance case
- Short tail current with low temperature dependence
- · High short circuit capability, self limiting
- · Fast & soft inverse CAL diodes
- Isolated copper baseplate using **DCB Direct Copper Bonding** Technology
- Large clearance (10 mm) and creepage distances (20 mm)

Typical Applications

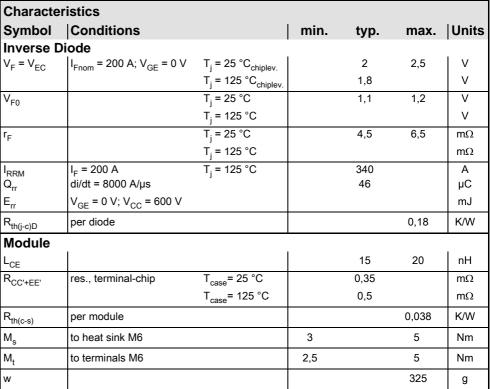
- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- **UPS** Uninterruptable power supplies at f_{sw} > 20 kHz Electronic welders at f_{sw} > 20 kHz

Absolute Maximum Ratings T _c = 25 °C, unless otherwise spec					
Symbol	Conditions		Values	Units	
IGBT					
V_{CES}	T _j = 25 °C		1200	V	
I _C	T _j = 150 °C	T _{case} = 25 °C	300	Α	
		T _{case} = 80 °C	210	Α	
I _{CRM}	I _{CRM} =2xI _{Cnom}		400	Α	
V_{GES}			± 20	V	
t _{psc}	$V_{CC} = 600 \text{ V}; V_{GE} \le 20 \text{ V};$	T _j = 125 °C	10	μs	
	Vces < 1200 V				
Inverse D					
I _F	T _j = 150 °C	T _{case} = 25 °C	260	Α	
		T _{case} = 80 °C	180	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	Α	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1800	Α	
Module					
I _{t(RMS)}			500	Α	
T_{vj}			- 40+ 150	°C	
T _{stg}			- 40+ 125	°C	
V _{isol}	AC, 1 min.		4000	V	

Characteristics $T_c =$		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 8 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	$T_j = 25 ^{\circ}C$		0,1	0,3	mA
V _{CE0}		T _j = 25 °C		1,5	1,75	V
		T _j = 125 °C		1,7		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		9	10,5	mΩ
		T _j = 125°C		11,5		mΩ
$V_{\text{CE(sat)}}$	I _{Cnom} = 200 A, V _{GE} = 15 V	$T_j = {^{\circ}C_{chiplev.}}$		3,3	3,85	V
C _{ies}				18	24	nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		2,5	3,2	nF
C _{res}				1	1,3	nF
Q_G	V _{GE} = 0V - +20V			2000		nC
R_{Gint}	$T_j = ^{\circ}C$			2,5		Ω
t _{d(on)}				130		ns
t _r	$R_{Gon} = 3 \Omega$	V _{CC} = 600V		40		ns
E _{on}		I _C = 200A		16		mJ
^L d(off)	$R_{Goff} = 3 \Omega$	T _j = 125 °C		460		ns
t _f		$V_{GE} = \pm 15V$		30		ns
E _{off}						mJ
$R_{th(j-c)}$	per IGBT				0,075	K/W

Ultra Fast IGBT Module

SKM 300GB125D


Preliminary Data

Features

- NPT Non punch-through IGBT
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- · Large clearance (10 mm) and creepage distances (20 mm)

Typical Applications

- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- **UPS** Uninterruptable power supplies at f_{sw} > 20 kHz Electronic welders at f_{sw} > 20 kHz

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

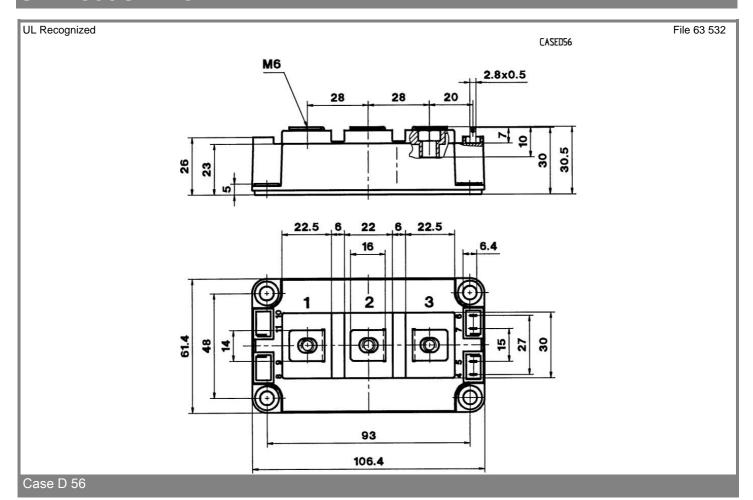
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

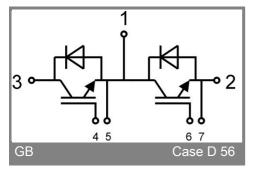
Ultra Fast IGBT Module

SKM 300GB125D

Preliminary Data

Features


- NPT Non punch-through IGBT
- Low inductance case
- Short tail current with low temperature dependence
- · High short circuit capability, self limiting
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using **DCB Direct Copper Bonding** Technology
- Large clearance (10 mm) and creepage distances (20 mm)


Typical Applications

- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- **UPS** Uninterruptable power supplies at f_{sw} > 20 kHz Electronic welders at f_{sw} > 20 kHz

Z _{th}			
Symbol	Conditions	Values	Units
Z,,,,,,,,			·
Z th(j-c)l R _i	i = 1	53	mk/W
R _i	i = 2	18,5	mk/W
R _i	i = 3	3,1	mk/W
R _i	i = 4	4	mk/W
tau _i	i = 1	0,04	s
tau _i	i = 2	0,0189	s
taui	i = 3	0,0017	s
tau _i	i = 4	0,003	s
Z _{th(j-c)D}	<u> </u>		
R _i	i = 1	115	mk/W
R_i	i = 2	52	mk/W
R_{i}	i = 3	11	mk/W
R _i	i = 4	2	mk/W
tau _i	i = 1	0,0366	s
taui	i = 2	0,0113	s
taui	i = 3	0,003	s
taui	i = 4	0,0002	s

6 11-09-2006 RAA © by SEMIKRON